Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural and optical properties of InxGa1-xAs strained layers grown on GaAs substrates by MOVPE

Identifieur interne : 000039 ( Main/Repository ); précédent : 000038; suivant : 000040

Structural and optical properties of InxGa1-xAs strained layers grown on GaAs substrates by MOVPE

Auteurs : RBID : Pascal:14-0029716

Descripteurs français

English descriptors

Abstract

InxGa1-xAs/GaAs pseudomorphic structures were grown by metalorganic vapor phase epitaxy. Reciprocal space mapping were recorded in the vicinity of (004) and (115) nodes using high resolution X-ray diffraction (HRXRD) in order to determine strain tensor components, indium compositions and thicknesses of alloys. Near-infrared photoluminescence (PL) was performed at 10 K. The impact of strain on PL response was revealed by peak energy positions and line width. In addition, valence-band splitting (VBS) and the shift of the heavy-hole were measured. Besides, photoreflectance (PR) at room temperature was useful to establish experimentally the dependence of VBS and band energy shifts (E0 and E00) on elastic strain due to lattice mismatches. Other parameters such as the internal electric-field and the electro-optical energy were determined from Franz-Keldysh oscillations analysis. Good correlation between the results obtained from all investigated techniques and theoretical predictions was confirmed.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0029716

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Structural and optical properties of In
<sub>x</sub>
Ga
<sub>1-x</sub>
As strained layers grown on GaAs substrates by MOVPE</title>
<author>
<name sortKey="Habchi, M M" uniqKey="Habchi M">M. M. Habchi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Monastir, Faculty of Sciences, Unité de Recherche sur les Hétéro-Epitaxies et Applications</s1>
<s2>5019 Monastir</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>5019 Monastir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tounsi, N" uniqKey="Tounsi N">N. Tounsi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Monastir, Faculty of Sciences, Unité de Recherche sur les Hétéro-Epitaxies et Applications</s1>
<s2>5019 Monastir</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>5019 Monastir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bedoui, M" uniqKey="Bedoui M">M. Bedoui</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Monastir, Faculty of Sciences, Unité de Recherche sur les Hétéro-Epitaxies et Applications</s1>
<s2>5019 Monastir</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>5019 Monastir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zaied, I" uniqKey="Zaied I">I. Zaied</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Monastir, Faculty of Sciences, Unité de Recherche sur les Hétéro-Epitaxies et Applications</s1>
<s2>5019 Monastir</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>5019 Monastir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rebey, A" uniqKey="Rebey A">A. Rebey</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Monastir, Faculty of Sciences, Unité de Recherche sur les Hétéro-Epitaxies et Applications</s1>
<s2>5019 Monastir</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>5019 Monastir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="El Jani, B" uniqKey="El Jani B">B. El Jani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Monastir, Faculty of Sciences, Unité de Recherche sur les Hétéro-Epitaxies et Applications</s1>
<s2>5019 Monastir</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>5019 Monastir</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0029716</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0029716 INIST</idno>
<idno type="RBID">Pascal:14-0029716</idno>
<idno type="wicri:Area/Main/Corpus">000235</idno>
<idno type="wicri:Area/Main/Repository">000039</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1386-9477</idno>
<title level="j" type="abbreviated">Physica ( E) low-dimens. syst. nanostrut.</title>
<title level="j" type="main">Physica. E, low-dimentional systems and nanostructures</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Band structure</term>
<term>Crystal structure</term>
<term>Elastic deformation</term>
<term>Electric field effects</term>
<term>Electronic structure</term>
<term>Gallium arsenides</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium</term>
<term>Line widths</term>
<term>MOVPE method</term>
<term>Mismatch lattice</term>
<term>Near infrared radiation</term>
<term>Optical properties</term>
<term>Photoluminescence</term>
<term>Photoreflectance</term>
<term>Reciprocal lattice</term>
<term>Reciprocal space</term>
<term>Strain tensor</term>
<term>Strained layer</term>
<term>VPE</term>
<term>Valence bands</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété optique</term>
<term>Couche contrainte</term>
<term>Méthode MOVPE</term>
<term>Epitaxie phase vapeur</term>
<term>Arséniure de gallium</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Réseau réciproque</term>
<term>Espace réciproque</term>
<term>Structure cristalline</term>
<term>Diffraction RX</term>
<term>Tenseur déformation</term>
<term>Indium</term>
<term>Rayonnement IR proche</term>
<term>Photoluminescence</term>
<term>Largeur raie</term>
<term>Bande valence</term>
<term>Structure électronique</term>
<term>Photoréflectance</term>
<term>Structure bande</term>
<term>Déformation élastique</term>
<term>Accommodation réseau</term>
<term>Effet champ électrique</term>
<term>InxGa1-xAs</term>
<term>Substrat GaAs</term>
<term>7867</term>
<term>6146</term>
<term>7322</term>
<term>6225</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In
<sub>x</sub>
Ga
<sub>1-x</sub>
As/GaAs pseudomorphic structures were grown by metalorganic vapor phase epitaxy. Reciprocal space mapping were recorded in the vicinity of (004) and (115) nodes using high resolution X-ray diffraction (HRXRD) in order to determine strain tensor components, indium compositions and thicknesses of alloys. Near-infrared photoluminescence (PL) was performed at 10 K. The impact of strain on PL response was revealed by peak energy positions and line width. In addition, valence-band splitting (VBS) and the shift of the heavy-hole were measured. Besides, photoreflectance (PR) at room temperature was useful to establish experimentally the dependence of VBS and band energy shifts (E
<sub>0</sub>
and E
<sub>0</sub>
<sub>0</sub>
) on elastic strain due to lattice mismatches. Other parameters such as the internal electric-field and the electro-optical energy were determined from Franz-Keldysh oscillations analysis. Good correlation between the results obtained from all investigated techniques and theoretical predictions was confirmed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1386-9477</s0>
</fA01>
<fA03 i2="1">
<s0>Physica ( E) low-dimens. syst. nanostrut.</s0>
</fA03>
<fA05>
<s2>56</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Structural and optical properties of In
<sub>x</sub>
Ga
<sub>1-x</sub>
As strained layers grown on GaAs substrates by MOVPE</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HABCHI (M. M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TOUNSI (N.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BEDOUI (M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ZAIED (I.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>REBEY (A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>EL JANI (B.)</s1>
</fA11>
<fA14 i1="01">
<s1>University of Monastir, Faculty of Sciences, Unité de Recherche sur les Hétéro-Epitaxies et Applications</s1>
<s2>5019 Monastir</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>74-78</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>145E</s2>
<s5>354000501629410140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0029716</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica. E, low-dimentional systems and nanostructures</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In
<sub>x</sub>
Ga
<sub>1-x</sub>
As/GaAs pseudomorphic structures were grown by metalorganic vapor phase epitaxy. Reciprocal space mapping were recorded in the vicinity of (004) and (115) nodes using high resolution X-ray diffraction (HRXRD) in order to determine strain tensor components, indium compositions and thicknesses of alloys. Near-infrared photoluminescence (PL) was performed at 10 K. The impact of strain on PL response was revealed by peak energy positions and line width. In addition, valence-band splitting (VBS) and the shift of the heavy-hole were measured. Besides, photoreflectance (PR) at room temperature was useful to establish experimentally the dependence of VBS and band energy shifts (E
<sub>0</sub>
and E
<sub>0</sub>
<sub>0</sub>
) on elastic strain due to lattice mismatches. Other parameters such as the internal electric-field and the electro-optical energy were determined from Franz-Keldysh oscillations analysis. Good correlation between the results obtained from all investigated techniques and theoretical predictions was confirmed.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H67</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60A46</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C22</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60B25</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Couche contrainte</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Strained layer</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Capa forzada</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Méthode MOVPE</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>MOVPE method</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Método MOVPE</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Epitaxie phase vapeur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>VPE</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Réseau réciproque</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Reciprocal lattice</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Red recíproca</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Espace réciproque</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Reciprocal space</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Espacio recíproco</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Structure cristalline</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Crystal structure</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>XRD</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Tenseur déformation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Strain tensor</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Tensor deformación</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Rayonnement IR proche</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Near infrared radiation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Largeur raie</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Line widths</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Bande valence</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Valence bands</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Photoréflectance</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Photoreflectance</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Structure bande</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Band structure</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Déformation élastique</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Elastic deformation</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Accommodation réseau</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Mismatch lattice</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Acomodación red</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Effet champ électrique</s0>
<s5>37</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Electric field effects</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>InxGa1-xAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Substrat GaAs</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>7867</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>6146</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>7322</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>6225</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>027</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000039 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000039 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0029716
   |texte=   Structural and optical properties of InxGa1-xAs strained layers grown on GaAs substrates by MOVPE
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024